Successful Treatment Of Idiopathic Generalized Subcutaneous Emphysema In Kajli A Ram By Large Bore Injection Needle

Ghulam Muhammad, Imaad Rashid1, *Sehrish Firyal and Muhammad Saqib

Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan

*Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan

Corresponding author e.mail: immad.rashheed@hotmail.com

1. Introduction

Generalized subcutaneous emphysema develops when air accumulates in subcutaneous area as a result of respiratory system distress. It is relatively uncommon in large as well as in small ruminants. Several different causes of this condition have been identified including trauma, surgical interventions, pulmonary emphysema and gas gangrene etc. However, in sheep and goats, generalized subcutaneous emphysema can also occur after the pneumonia and parturition (Roberson et al., 2012; Radostits et al., 2007). Occasionally, air enters into the subcutaneous region after it escapes from the respiratory system. Clinical signs include painless subcutaneous emphysema on palpation, onset of dyspnea and decreased feed intake. Treatment depends upon the cause of the condition. However, a closure of the entry point of the air and multiple skin incisions are required to remove the accumulated gas followed by supportive treatment (Radostits et al., 2007).

2. Case history

A 1-year old entire ram of Kajli breed, weighing about 50 kg was presented for treatment with a complaint of spontaneously occurring accumulation of air almost all over the body. The ram was managed by tethering onto a post with no grazing. History revealed that the animal developed almost symmetrical subcutaneous emphysema two days ago that had gradually increased. The animal was treated with antibiotic and antihistamine by a quack but had remained non responsive to this treatment. Disfiguration of the ram was so alarming for the owner that he finally decided to recourse for professional treatment. There was no history of trauma or pneumonia but the ram would often butt with its two cohort rams. Feed of the animal comprised of alfalfa (Medicago sativa) fodder and a chickpea based supplemented diet. The ram was successfully treated by evacuation of accumulated air with the help of a 16 gauge needle inserted at 6 different sites. The affected ram recovered in 2 days.

3. Treatment

Generalized subcutaneous emphysema ensues when air/gas accumulates in subcutaneous region via aortic hiatus and cervical facial planes synchronously. It may also occur as a consequence of trauma (e.g. injury to respiratory system, fracture of the nasal bone, fracture of rib, traumatic reticulitis), surgical manipulations (e.g. rumenotomy, ruminal tricotomization), pulmonary emphysema and gas gangrene etc. However, in sheep and goats, generalized subcutaneous emphysema has been reported in several species. Bauer and Currie (1998) reported this condition in a 5-year old Miniature Pinscher. The condition developed traumatically as a consequence of fight with another dog. Dog recovered after surgical manipulation. Iranian workers (Akhtardanesh et al., 2007) reported generalized extensive subcutaneous emphysema in a dog that had been hit by a big timber falling on the dog’s kennel. The subject recovered in 10 days without any treatment. In a horse, idiopathic generalized subcutaneous emphysema was reported by Caron and Townsend (1994). The problem resolved without any specific therapy. Indian workers (Rajesh and Jha, 2011) reported generalized subcutaneous emphysema in a non-descript goat as a result of a small cutaneous wound due to dog bite.

In human, treatment of spontaneous subcutaneous emphysema may require nothing more than bed rest, medication to control pain, and perhaps supplemental oxygen (Stiernberg, 1990).

X-rays can help in diagnosis but in many developing countries, the diagnostic facilities are rudimentary even for human being. In as much as the cause was dealt with in a village, use could not be made of this diagnostic intervention in the present case. Furthermore, air in subcutaneous tissue may interfere with radiography of the chest and obscure serious underlying causes such as pneumonia (Criner and D’Alonzo, 2002). As also is the pitfall of ultrasound (Gravenstein et al., 2007). The exact point from which air leaks into the soft tissue can be spotted with CT scan (Wicky et al., 2000). The lack of availability of this expensive diagnostic tool precluded its use in spotting the exact cause of the subcutaneous emphysema in the subject of the present report.

A 16-gauge 3.8 cm long sterile needle was inserted obliquely into the subcutaneous space at six different sites viz. wither, on the side of face, rump, kin, ear pinnae and at the junction of hind leg with the abdomen. The air below the skin was forcibly propelled towards the needle. A gush of air was produced on each manual propulsion of air. It took almost 40 minutes to completely remove the air that had accumulated in subcutaneous spaces all over the body. On each occasion of insertion of the needle, the area was sanitized with methylated spirit. The same was repeated at the time of removal of the needle after evacuation of air. The following parenteral adjunctive treatment was administered after removal of air:

- Enrofloxacin 100 mg/ml 2ml i.m. (Aviloxin®, Hilton Pharma, Karachi, Pakistan)
- Pheniramine maleate 22.7mg/ml 3ml i.m. (Pheniv®, Lawrance Pharma, Lahore, Pakistan)
- Atropine sulphate 1 mg/ml 1ml i.m. (Atrostar®, Star Labs, Lahore, Pakistan)
- Oxfendazole 22.5 mg/ml 10 ml PO (Oxanazole®, Sana Labs, Faisalabad, Pakistan)
- Pheniramine maleate 22.7 mg/ml 3 ml i.m. (Pheniv®, Lawrance Pharma, Lahore, Pakistan)

The ram completely recovered in 2 days without any further treatment.

Cite this article as: Ghulam Muhammad, Imaad Rashid, Sehrish Firyal and Muhammad Saqib, SUCCESSFUL TREATMENT OF IDIOPATHIC GENERALIZED SUBCUTANEOUS EMPHYSEMA IN KAJLI A RAM BY LARGE BORE INJECTION NEEDLE / Mat. Sc. Med.1(1)(2017) 01-02
In terms of severity of subcutaneous emphysema as well as the inciting etiology, the case described in the present report was an oddity as none of the etiologic factors associated with subcutaneous emphysema listed above could be traced. The ram responded very well to the removal of air with large bore needle. As far as could be ascertained, no documented study has heretofore reported the use of a large bore injection needle for the treatment of subcutaneous emphysema in animals.

References