FEASIBILITY STUDY OF LOW DENSITY WASTE PLASTIC IN NON-LOAD BEARING ASPHALT PAVEMENT IN DISTRICT FAISALABAD

Syed Shahzaib Ali¹, Nimrath Ijaz², Nafeesa Aman¹, Engr.Mohsin Noor¹
¹Department of Structures and Environmental Engineering, Faculty of Agricultural Engineering & Technology, University of Agriculture, Faisalabad, Pakistan.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

Article history:
Received 25 August 2017
Accepted 20 October 2017
Available online 7 November 2017

Keywords:
waste plastic, aggregate, bitumen and plastic modified aggregate

ABSTRACT

The rapid growth of population and development of industrial field is contributing to massive waste pollution in which plastic waste is considered as most difficult waste to deal with due to its non-biodegradable nature. This lead to various impact on environment as well as all living things. Many of the waste produced due to human activity will remain in the environment for long period of time leading to various environmental problem. To overcome this problem a study is conducted in which plastic waste is effectively utilized with bitumen a binding material in construction of flexible pavements to enhance its stability and water resistant capacity. Cleaned plastic waste is shredded to a size of 2.76mm-4mm is mixed with hot bitumen mix and then this waste plastic added bitumen is mixed with hot aggregate and the end product is used as laying material for road construction. The objective of this study is to give an innovative idea for effective use of plastic waste and recommend a favorable percentage of plastic for replacement of bitumen. This paper also includes some tests performed on aggregate and bitumen.

1. INTRODUCTION

Nowadays plastic is considered as a part of life. It is used at every step of life from manufacturing to disposal processes. Due to industrial advancement there is increase in production and plastic is considered as a cheaper raw material. Plastic is basically a polymer having ability of changing shape and non-biodegradable in nature. There are two types of plastic; thermosets and thermoplastics. Thermosets are those plastics which turn into solid form when exposed to high temperature. They are used because of their toughness and strength in construction and automobiles works. On the other hand thermoplastics liquefy upon heating and maintain their original toughness and strength in construction and automobiles works. Rapid growth of population and industries is resulting into increase in waste production at global level which leads to a serious problem of handling this waste in an efficient way. Plastic waste disposal is pointed out as most difficult task as according to a study it is said that plastic can remain stable for about 4500 years on earth without any degradation. So this increases amount of waste day by day. In Faisalabad current collection rate of Faisalabad waste management company (FWMC) is about 60%-65% or (FWMC) provided services to 4 towns having current collection rate of Faisalabad waste management company (FWMC) which provided services to 4 towns having current collection rate of Faisalabad waste management company (FWMC).

Figure 1: Percentage of different waste types in Faisalabad

So this study shows the use of this plastic in road construction to utilize this waste to control environmental problems in Faisalabad. So we use low density plastic waste like wrappers, bottles, bags etc. as a coating layer on aggregate mix and used as a replacement of bitumen. Use of plastic mix decreases the requirement of bitumen by 10%, by enhancing its durability and firmness in an eco-friendly way [1]. Substitution of 10-15% bitumen by plastic retain Rs 35000 – Rs 45000 per Km of road stretch. Addition of plastic in road construction eradicates the shrinkage and cracking of road surface level [2]. Use of plastic not only gives strength to infrastructure but also decrease the penetration ability of material as well as ductility. By using favorable percentage of plastic between ranges of 5% to 10% can lead to reduction in total material cost by 7.99% and minimize the effect of bleeding in hot climatic regions. She also said that this replacement not only solve the problem of soil and water pollution, but also minimize the noise pollution due to sound absorption ability of plastic [3]. Up to 10% of plastic addition can be considered as optimum range based on Marshal Stability test. This addition increases the properties of bitumen and aggregate as well as an eco-friendly technique to deal with plastic waste disposal issue and gives more flexibility to infrastructure [4]. Up to 12% of bitumen can be replaced by plastic which as a result use plastic waste in a very productive way and intensify the binder performance and decreases the moisture absorbance capacity of road [5]. Addition of plastic in road construction process increases the melting point of bitumen, extend life of road and build up more sound resistant ability in roads. Also binding properties increases and is a good way to get rid of the plastic waste disposal problem [6]. Plastic waste causes lots of environmental issues. Waste plastic causes water stagnation, choking of drains, many diseases and also resist against soil to penetrate water to fulfill the plant requirement [7]. So to deal with these problems, an effective, environment friendly and economical method was needed. So the basic purpose of this study is to compare properties of plain bitumen mix with plastic mix bitumen to check the durability and stability of the road in hot climatic region like Faisalabad having temperature up to 50oc [8]. Another objective is to give an idea to overcome the issue of plastic waste disposal in a productive and cost-efficient way to reduce the pollution problems which we are facing due to this plastic material.

2. METHODOLOGY

Methodology was consisting on two phases first phase was data collection and second phase was analysis. General investigation of plastic waste materials and aggregate and bitumen requires various field tests. This part was divided into three sections first section represent physical requirements of aggregate and bitumen, second represent the properties of plastic, third shows the preparation of plastic waste material for shredding. In site detail the whole process were done in Faculty of Agriculture Engineering and Technology at University of Agriculture Faisalabad. Plastic waste were collected like bags, wrappers of biscuits and chocolates, bottles made of PE (polyethylene) and PP (polypropylene) and collected plastic waste were de-dusting or washing if required. The collected waste plastic was cut into size between 2.36mm ~ 4.76mm by using shredding machine. Care was taken that PVC waste should be separated out before further processing. After this step next was the aggregate mix is heated up to 165o C and it transfer to mixing chamber. Also bitumen were heated at 160o C. Plastic waste were added slowly in bitumen after heated at 160oC mixture was stirred manually around 20 min. but for all this monitoring of exact
temperature is very important during this process and temperature must
retain about 160°C – 1650C. At the mixing chamber the plastic waste
containing bitumen were added over the hot aggregate and mixed
uniformly [9]. Then this final result is used for laying roads. The road
laying temperature is 110°C – 120°C.

3. RESULTS AND DISCUSSION

The study shows that by the replacement of 10% by weight waste plastic
increase its stability. Marshall stability and flow values along with density;
air voids in the total mix, voids in the mineral aggregate, or voids filled
with asphalt, or both, filled with asphalt are used for laboratory mix
design and evaluation of asphalt mixtures. In addition, Marshall Stability
and flow can be used to monitor the plant process of producing asphalt
mixture. Marshall Stability and flow may also be used to relatively
evaluate different mixes and the effects of conditioning such as with water.

<table>
<thead>
<tr>
<th>Bitumen Content</th>
<th>Stability (K N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 Percent</td>
<td>17.03</td>
</tr>
<tr>
<td>5.0 Percent</td>
<td>17.18</td>
</tr>
<tr>
<td>5.5 Percent</td>
<td>17.68</td>
</tr>
<tr>
<td>6.0 Percent</td>
<td>18.61</td>
</tr>
</tbody>
</table>

Typically, Marshall Stability is the peak resistance load obtained during a
constant rate of deformation loading sequence. However, depending on the
composition and behavior of the mixture, a less defined type of failure
has been observed. As an alternative method, Marshall Stability can also be
defined as the load obtained, when the rate of loading increase begins to
decrease. The magnitude of Marshall Stability varies with aggregate type
and grading and bitumen type, grade and amount. The Marshall Stability
test conducted during the study with different percentages of plastic waste
and size of sample showed the values of Stability also increasing for fixed
rate of 10 % of plastic waste.

5. CONCLUSION

This research concluded that waste plastic added asphalt can be used for
better performance of road. Waste plastic added asphalt have binder
performance and it also reduce the voids. Waste plastic added asphalt is
better than plain asphalt. When use for road construction prepare with
high temperature suitable for tropical region. Using waste plastic added asphalt
decrease penetration increase roads loading capacity and more
suitable for tropical region. Using waste plastic added asphalt,
better than plain asphalt. When use for road construction prepare with

6. RECOMMENDATION

1. Asphalt properties modified by the addition of waste plastic.
2. 10% to 12% range of waste plastic in asphalt were optimum
content.
3. Using plastic in road construction reduce noise pollution also
because plastic has property to observe sound.
4. The waste plastic use in road construction improve the quality and
performance of road.
5. By use of waste plastic reduce about 8% to 10% cost of asphalt in
road construction

ACKNOWLEDGEMENT

This study would never be completed without help of God almighty.
Whose blessing and exaltations flourished my thoughts and thrilled my
ambitions to eventually shape up the cherished fruit of my modest
efforts to this manuscript. We feel it an utmost pleasure to be able to
express the hearts gratitude and deep sense of devotion to Engr. Mohsin
Noor and Dr. Haroon Rashid for their attitude, constant help, valuable
suggestion and criticism towards the completion of this project report. We
also owe thanks to our family for their prayers and encouragement.

REFERENCES

International Journal of Application or Innovation in Engineering and
Management, 2 (4), 540-552.
2012. A technique to dispose waste plastic in an ecofriendly way-
Application in construction of flexible pavements. Construction and
Building Materials, 28 (1), 311-320.
of waste plastic in construction of bituminous road. International Journal of
Engineering Science and Technology, 4 (5), 2351-2355.
using plastic waste in bitumen concrete. International Journal of Latest
Research in Engineering and Computing, 5 (2), 7-12.
Waste in Road Construction. In International Journal of Computer
Applications (0975–8887), International Conference on Quality Up-
grading in Engineering, Science and Technology (IQUEST2015).
recycled solid waste materials in asphalt pavements. Resources,
Conservation and Recycling, 52, 58-73.
polymer modifier on the properties of bituminous concrete mixes.
Construction and Building Materials, 25, 3841-3848.
Utilizations of unbound recycled aggregates from selected CDW in