ON LEFT ALTERNATIVE LOOPS

Amir Khan1,*, Mehtab Khan2, Hidayat Ullah Khan3, Gul Zaman4

1Department of Mathematics and Statistics, University of Swat, Khyber Pakhtunkhwa, Pakistan.
2School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan.
3Department of Mathematics, University of Malakand, Khyber Pakhtunkhwa, Pakistan.
*Corresponding Author email: amir.maths@gmail.com

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARTICLE DETAILS

Article History:
Received 3 July 2017
Accepted 6 October 2017
Available online 2 November 2017

Keywords:
Left alternative loops, Alternative loops, Construction of loops, C-loops, Moufang loops.

1. INTRODUCTION

A groupoid \((Q, \cdot)\) is a quasigroup if, for each \(a, b \in Q\), the equations \(ax = b, ya = b\) have unique solutions where \(x, y \in Q\) [1]. A loop is a quasigroup with an identity element \(e\) such that \(x \cdot e = x = e \cdot x\). The left nucleus of a loop \(Q\) is \(N_l = \{x \in Q : (xy)x = (yx)y \forall y, x \in Q\}\). The right nucleus of a loop \(Q\) is \(N_r = \{x \in Q : (yx)y = (yx)x \forall y, x \in Q\}\), and the middle nucleus of \(Q\) is \(N_m = \{x \in Q : (yx)x = x(yx) \forall y, x \in Q\}\). The nucleus of \(Q\) is the set \(N = N_l \cap N_r \cap N_m\) [2, 3].

A loop \((L, *)\) is termed as left alternative loop if the following identity is satisfied for all \(x, y, z \in L\):

\[x * (x * y) = (x * x) * y.\]

Every C-loop and Moufang loop is left alternative loop [4]. In this paper, we construct left alternative loops of order 8 belongs to an infinite family of non-associative non-commutative left alternative loops constructed here for the first time.

2. CONSTRUCTION OF LEFT ALTERNATIVE LOOP

Let \(G\) be a multiplicative group with neutral element \(1\), and \(A\) an abelian group written additively with neutral element \(0\) [5-7]. Any map \(\mu : G \times G \to A\) satisfying

\[\mu(g, 1) = 0 \text{ for every } g \in G,\]

is called a factor set. When \(\mu : G \times G \to A\) is a factor set, we can define multiplication on \(G \times A\) by

\[(g, a)(h, b) = (gh, a + b + \mu(g, h)).\]

The resulting groupoid is clearly a loop with neutral element \((1, 0)\). It will be denoted by \((G, A, \mu)\). Additional properties of \((G, A, \mu)\) can be enforced by additional requirements on \(\mu\).

We construct left alternative loop with the help of two groups such that one is multiplicative group and other is additive abelian group [8-11].

Lemma 1. Let \(\mu : G \times G \to A\) be a factor set. Then \((G, A, \mu)\) is a left alternative loop if and only if

\[\mu(g, x) + \mu(g, h) \cdot \mu(g, h) = \mu(g, h) \cdot \mu(g, h) \cdot \mu(g, h) \forall g, h \in G.\] \hspace{1cm} (1)

Proof. By definition the loop \((G, A, \mu)\) is left alternative loop if and only if

\[([g, a][g, b])h = [g, a][g, b].\]

Hence the result follows.

We call a factor set satisfying (1) a left alternative factor set.

Proposition 1 Let \(n \geq 2\) be an integer. Let \(A\) be an abelian group of order \(n\), and \(\alpha \in A\) an element of order bigger than 1. Let \(G = \{1, u, v, w\}\) be the Klein group with neutral element 1. Define

\[\mu : G \times G \to A.\]
by
\[\mu(a,b) = \begin{cases}
\alpha, & \text{if } (a,b) \neq (a,a)(a,b) \\
0, & \text{otherwise}
\end{cases} \]
Then \(L = (G, A, \mu) \) is a non-flexible (hence non-associative) and non-commutative left alternative loop with \(N(L) = \{(a,a) : a \in A\} \).

Proof. The map \(\mu \) is clearly a factor set. It can be depicted as follows:

<table>
<thead>
<tr>
<th>\mu</th>
<th>0</th>
<th>1</th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>u</td>
<td>0</td>
<td>\alpha</td>
<td>0</td>
<td>\alpha</td>
<td></td>
</tr>
<tr>
<td>v</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>w</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

To show that \(L = (G, A, \mu) \) is a left alternative loop, we verify Equation (1) as follows.

case 1 There is nothing to prove when \(g, h = 1 \).

case 2 when \(g = u \), Equation (1) becomes
\[\mu(u,u) = \mu(u,b) + \mu(u,uh) \]
If \(h = a \), then \(\mu(u,a) = \mu(u,a) + \mu(u,1) \Rightarrow a = a \).
If \(h = v \), then \(\mu(u,v) = \mu(u,v) + \mu(u,v) \Rightarrow a = a \).
If \(h = w \), then \(\mu(u,w) = \mu(u,w) + \mu(u,v) \Rightarrow a = a \).

case 3 when \(g = v \), Equation (1) becomes
\[\mu(v,v) = \mu(v,v) + \mu(v,v) \]
If \(h = u \), then \(\mu(v,v) + \mu(v,v) = \mu(v,v) \Rightarrow 0 = 0 \).
If \(h = v \), then \(\mu(v,v) + \mu(v,v) = \mu(v,v) \Rightarrow 0 = 0 \).
If \(h = w \), then \(\mu(v,w) + \mu(v,w) = \mu(v,w) \Rightarrow 0 = 0 \).

case 4 when \(g = w \), Equation (1) becomes
\[\mu(w,w) = \mu(w,v) + \mu(w,wh) \]
If \(h = u \), then \(\mu(w,u) = \mu(w,u) + \mu(w,v) \Rightarrow 0 = 0 \).
If \(h = v \), then \(\mu(w,v) = \mu(w,v) + \mu(w,u) \Rightarrow 0 = 0 \).
If \(h = w \), then \(\mu(w,w) = \mu(w,w) + \mu(w,v) \Rightarrow 0 = 0 \).

Associativity:
\[
(a,\alpha)(v,\alpha)(u,\alpha) = (a,\alpha)(v,\alpha)(u,\alpha)
\]
And
\[
(a,\alpha)(v,\alpha)(u,\alpha) = (a,\alpha)(v,\alpha)(u,\alpha)
\]
This implies
\[
(a,\alpha)(v,\alpha)(u,\alpha) = (a,\alpha)(v,\alpha)(u,\alpha)
\]
It implies that \(L = (G, A, \mu) \) is non-flexible and hence non-associative.

Commutativity:
\[
(a,\alpha)(w,\alpha) = (a,\alpha)(w,\alpha)
\]
It implies that \(L = (G, A, \mu) \) is non-commutative.

Now it remains to show that \(N(L) = \{(a,a) : a \in A\} \). For this consider

```
0 1 2 3 4 5 6 7
0 1 2 3 4 5 6 7
1 2 3 4 5 6 7 0
2 3 4 5 6 7 0 1
3 4 5 6 7 0 1 2
4 5 6 7 0 1 2 3
5 6 7 0 1 2 3 4
6 7 0 1 2 3 4 5
7 0 1 2 3 4 5 6
```

We verified the above example with the help of GAP (Group Algorithm Program) package [12]

REFERENCES

