Multigrid Solution for the Cauchy Problem Associated with Helmholtz Type Equation on Non-Uniform Grids

Fazal Ghaffar¹, Noor Badshah², S. Islam³

¹Department of Mathematics Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa, Pakistan.
²Department of Basic Sciences University of Engineering and Technology Peshawar, Khyber Pakhtunkhwa, Pakistan.
³Corresponding Author email: fghaffarmaths@gmail.com

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Helmholtz equation has many real-world applications related to wave propagation and vibrating phenomena [1], the radiation and scattering of wave [2, 3]. We focus on the important application of Helmholtz equation that is the problem of heat conduction in fins [4-6]. The boundary conditions are often incomplete in many engineering problems and the solution is prescribed at some interior points in the domain. Generally, these are called ill-posed problems such that the stability and uniqueness of their solution are not guaranteed [7]. A classic example of an inverse problem for Helmholtz-type equation is the Cauchy problem. In this problem, the boundary conditions for both the solution and its normal derivative are prescribed only on a part of the boundary of the solution domain while having no information about the remaining part of the boundary. The uniqueness of the Cauchy problem is guaranteed unlike the direct problems without removing the eigenvalues for the Laplacian. Most models of real life problems are still very difficult to solve either theoretically or numerically. There has recently devoted to the search for better and more efficient methods for determining an approximate or numerical solution.

The objective of this work is to establish an algorithm based on Multigrid method for Helmholtz equation. Higher order compact schemes (HOC) are used for the solution of Helmholtz equation and other elliptic PDEs [8, 9]. Consider the three-dimensional (3D) Helmholtz equation

\[\Delta u + \chi u + \ell f = f(x, y, z), \quad (x, y, z) \in \Omega \] \hspace{1cm} (1)

where \(\Omega \) is a cubic domain and \(\ell \) is a wave number. The forcing function \(f(x, y, z) \) and the solution \(u(x, y, z) \) have the required continuous differentiability up to a specific order. Helmholtz equation has many real-world applications like elasticity, electromagnetic waves, acoustic wave scattering, weather and climate prediction, water wave propagation, noise reduction in silencers and radar scattering. In this paper, we use a finite difference approximation on non-uniform grids in discrete domain to obtain a scheme up to fourth order accuracy. We also considered Helmholtz equation with constant value of \(\ell \). The discretized form of Equation (1) is

\[\delta_{x} u_{i,j} + \delta_{y} u_{i,j} + \delta_{z} u_{i,j} + \ell^{2} u_{i,j} = f_{i,j} + O(h^{2}). \] \hspace{1cm} (2)

Equation (1) has been solved by different techniques such as finite-difference method (FDM) [10], fast Fourier transform- based (FFT) methods [11], finite element method (FEM) [12], the spectral-element method [13], compact finite-difference method [14] and multigrid methods [15]. Multigrid method based on HOC schemes is among the most efficient iterative technique for solving PDEs [16, 17].

In FDM the number of mesh points will be enlarged to increase the accuracy however, it will also increase the computational time. Helmholtz equation is solved by FEM and spectral-element method, but the limitations of these methods are of high computational cost [13]. Many iterative techniques for Helmholtz equation suffer due to their slow convergence. The investigation for fast iterative methods to achieve higher order accuracy for PDEs is more attractive a area of research.

Multigrid method together with the HOC schemes on uniform grids are developed in [18-20, 17]. In most cases, when sudden changes occur in a flow, the step sizes have to be rectified over the entire domain. Under these situations, where points are concentrated in the regions of sharp variation local mesh refinement procedures [8, 15, 21-24] are necessary, thus dramatically reducing the computational time and computer storage. Cao and Ge developed a multigrid method with HOC scheme on non-uniform grids for solving 2D convection diffusion equation [21]. This paper is based on approach that an interpolation operator and a projection operator that are suited for HOC scheme using non-uniform mesh is represented by transformation-free HOC scheme on non-uniform grids. The main focus in this paper is to develop multigrid method based on HOC scheme on non-uniform grids for solving of 3D Helmholtz equation. To the best of our knowledge 3D Helmholtz equation is not solved by multigrid method based on HOC scheme on non-uniform grids.

2. MATHEMATICAL FORMULATION

For the sake of explanation physically referring to the heat transfer, it is assuming that the temperature field \(T(x) \) satisfies the Helmholtz equation in an open bounded domain \(\Omega \subseteq \mathbb{R}^d \), where \(d \) is the dimension of the space and \(d \in \{1, 2, 3\} \).

\[
L_T(x) = -\nabla \cdot (\kappa \nabla T(x)) + \rho(x) = 0, \quad x \in \Omega
\]

where \(\kappa = \kappa(x) \in C^1(\mathbb{R}^d) \) and \(\kappa' \in C^2(\mathbb{R}^d) \), and \(\beta(x) \) is the partial differential Equation (3) models the heat conduction in a fin [4, 5, 6]. Where \(T \) is the local fin temperature, \(\beta = \frac{T}{h} \) such that \(k \) is the thermal conductivity, \(h \) is the coefficient of the heat transfer of the fin and \(l \) is the half-fin thickness. The Cauchy problem under consideration requires solution of PDE (3).

Consider a cubic domain \((x, y, z) \in [a_i, b_i] \times [c_j, d_j] \times [e_k, f_k] \). Discretization is performed on a three-dimensional non-uniform grids points. The above intervals \([a_i, b_i] \times [c_j, d_j] \times [e_k, f_k] \) are divided into subintervals

\[
a_i = x_0, x_1, x_2, \ldots, x_N = a_2,
\]

\[
b_1 = y_0, y_1, y_2, \ldots, y_N = b_2,
\]

\[
c_1 = z_0, z_1, z_2, \ldots, z_N = c_2.
\]

In \(x \)-direction, consider \(h_i = \frac{b_i - a_i}{N - 1} \), the forward and backward step sizes are given by

\[
h_0 = x_0 - x_1 = \delta h_i, \quad h_N = x_N - x_{N-1} = \delta h_i, \quad 1 \leq i < N - 1.
\]

Also for \(y \)-direction, \(h_i = \frac{d_j - c_j}{N - 1} \),

\[
h_0 = y_0 - y_1 = \delta h_i, \quad h_N = y_N - y_{N-1} = \delta h_i, \quad 1 \leq j < N - 1.
\]

Furthermore, we define \(\alpha_i, \beta_j, \gamma_k \) as \(\alpha_i = \beta_0, \beta_i = \beta_0 + \delta h_i \) and \(\gamma_k = \gamma_0 - \delta h_k \).

Similarly \(\alpha_i, \beta_j, \gamma_k \) and \(\alpha_i, \beta_j, \gamma_k \) can be found accordingly for \(y \)- and \(z \)-directions. If \(\alpha_i = \beta_0 = 1 \), \(h_0 = h_1 = h_2 \), then the grids turn to be uniform. The approximate value of a function \(u(x, y, z) \) at the interior grids points \((x_i, y_j, z_k)\) is represented by \(u_{ij} \) and the approximate values of other twenty six (26) nearest grid points are determined by \(u_i, j, k \) as in Figure 1(b).
definition of τ_n, it is observed that when $h_n = h_{n-1}$, $h_{n+1} = h_{n}$, then Equation (12) is of third order accuracy. In order to improve the order of accuracy we consider

$\frac{h^2}{\Delta z^2} u_{n+1} + K \frac{h}{\Delta z} u_{n+1} + L \frac{h}{\Delta z} u_{n-1} = H\frac{h^2}{\Delta z^2} u_{n+1} + K \frac{h}{\Delta z} u_{n+1} + L \frac{h}{\Delta z} u_{n-1}$

(13)

and

$u_{n+1} = \left(e^{\frac{1}{2} h (d_e f)} \right) \left(e^{\frac{1}{2} h (d_e f)} \right) \left(e^{\frac{1}{2} h (d_e f)} \right)$

(14)

Through central difference schemes the first order and second order derivative in Equations (13) and (14) can be approximated. Now combining equations (9) and (10) with equations (13) and (14), the nineteen point HOC scheme on non-uniform mesh points for the three-dimensional Helmholtz Equation (1) can be written as

$\sum_{i=1}^{19} A_{ij} u_{n+1} = f_{nx} + H_1 \frac{h^2}{\Delta z^2} + K \frac{h}{\Delta z} + L \frac{h}{\Delta z} + H_1 \frac{h^2}{\Delta z^2}$

(15)

The coefficients on the LHS in Equation (15) are given as

$A_{ij} = \begin{cases} 2 & a_{ij}, b_{ij}, h_{ij} \neq 0 \end{cases}$

$A_{ij} = \begin{cases} 0 & a_{ij}, b_{ij}, h_{ij} = 0 \end{cases}$

(16)

It is easier to know that this scheme has fourth order of accuracy from expansion of τ_n. Under uniform grids distribution the scheme has four to fifth order accuracy as proposed by [25, 26, 18].

3. MULTIGRID METHOD

Multigrid method is one of the most efficient and fastest method for solving PDEs. In multigrid method, the rate of convergence is independent of the mesh size. This method is more effective for solving large scale of sparse linear systems obtained from the discretization of elliptic PDEs [15, 27, 16, 28, 29]. The main principle of multigrid method is to smooth the error on coarse grid level using basic iterative methods such as Jacobi or Gauss-Seidel method, etc. Multigrid method consists of three important components that are relaxation, restriction and interpolation operators. These are applied as “a single iteration of multigrid cycle comprised of manipulating the error by the application of relaxation method, fixing the residuals on the coarse grid level, solving the error equation on the coarse grid and adjusting the correction of coarse grid up to the fine grid level”.

Some specific methods have been applied for the solution of 2D and 3D Helmholtz equation with HOC schemes on uniform grids [8, 19, 12, 14, 10, 17, 29]. All weighting restriction operator and the standard bilinear interpolation operator are used as the inter grid transfer operators. But in case of non-uniform grids these restriction and interpolation operators are quite different.

4. NUMERICAL EXPERIMENTS

In order to check the effectiveness of the present method, some problems are chosen. V-cycle multigrid method is used with zero initial guess and the process is stopped when the Euclidean norm of the residual vector is reduced by 10^{-10} on the finest grid level. The effectiveness of multigrid method with HOC scheme and CD scheme (12) is presented. The reported errors are the maximum absolute errors between the computed solution and the exact solution on finest grid. The order of accuracy for a difference scheme is defined as,

$\text{Order} = \log_{10} \frac{\text{Error}(N_i)}{\text{Error}(N_j)}$

where $\text{Error}(N)$ and $\text{Error}(N_j)$ are maximum absolute errors approximated for two different grids with $N_i + 1$ and $N_j + 1$ points in both directions while N_i is half of N_j.

Example 1. Consider the following elliptic PDE with the source term

$u_{x} + u_{y} + \ell u = f(x, y, z)$

$0 < x < 1, 0 < y < 1, 0 < z < 1$.

$f(x, y, z) = (10 + 10^1 e^{x^{10}}) (y (1 + z) - x - (z (z - 1)) + 200 e^{100}$.

(17)

the boundary conditions and the source function are given by the analytic solution, that is

$u(x, y, z) = e^{10} - [y (1 - z) - x - z (z - 1)]$.

(18)
The above problem has a steep boundary layer along \(x = 0 \); therefore, we are using non-uniform grids along \(x \)-axis which are accumulating near \(x = 0 \) and uniform grids along \(y, z \)-axis with the following stretching function [29],

\[
x = \frac{i}{N_x} + \frac{\lambda}{\pi} \sin \left(\frac{2\pi i}{N_x} \right),
\]

\[
y = \frac{j}{N_y} + \frac{\lambda}{\pi} \sin \left(\frac{2\pi j}{N_y} \right),
\]

\[
z = \frac{k}{N_z} + \frac{\lambda}{\pi} \sin \left(\frac{2\pi k}{N_z} \right).
\]

where \(\lambda \) is a stretching parameter, and controlling the tightness of the grid points in \(x \)-direction. When \(\lambda < 0 \), then more grid points are accumulated to the boundary \(x = 0 \) and the boundary \(x = 1 \). If \(\lambda = 0 \), then the grids reduce to be uniform. Also, when the grid points are \(32^3 \) and \(\lambda = -0.8 \), then the distribution of grids in \(xy \)-plane is shown as in Figure 1(a). The estimated accuracy and maximum absolute error with different stretching parameter \(\lambda \) is presented in Table 1. When \(\lambda = 0 \), then the results are very poor. More accurate solution and order of convergence is obtained from HOC schemes with decreasing stretching parameter \(\lambda \) in non-uniform grids. We observed that when \(\lambda = -0.8 \), the solution obtained with HOC schemes is more accurate, but when \(\lambda \) decreases continuously to \(-0.9\), then the accuracy does not further increase. This situation is not wondering because putting more grids in the boundary layer area that will necessarily cause lack of mesh points in the other regions in domain. Figure 2, indicates the configuration of solution in \(xy \)-plane with \(\gamma = 0.5 \). (a) shows the exact solution, (b) solution obtained from HOC scheme on uniform grids, (c) HOC scheme non-uniform grids, (d) computed solution with CDS scheme non-uniform grids.

Table 1: Comparison of maximum absolute errors, CPU timing and order of accuracy of the two schemes for Example 1,

<table>
<thead>
<tr>
<th>N</th>
<th>(\lambda)</th>
<th>Error</th>
<th>CPU</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>0.0</td>
<td>5.808e-2</td>
<td>5.808e-2</td>
<td>1.0</td>
</tr>
<tr>
<td>64</td>
<td>0.2</td>
<td>5.421e-1</td>
<td>5.421e-1</td>
<td>1.0</td>
</tr>
<tr>
<td>32</td>
<td>0.4</td>
<td>1.118e-1</td>
<td>1.118e-1</td>
<td>1.0</td>
</tr>
<tr>
<td>16</td>
<td>0.6</td>
<td>7.000e-2</td>
<td>7.000e-2</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>8.325e-3</td>
<td>8.325e-3</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>8.325e-3</td>
<td>8.325e-3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Example 2. Consider the PDE with a source term \(f(x, y, z) \),

\[
u_{ux} + u_{uy} + u_{uz} + f(x, y, z) = f(x, y, z), \quad 0 < x, y, z < 1,
\]

with the analytic solution

\[
s(x, y, z) = (1 - e^{\lambda x}) (1 - e^{\lambda y}) (1 - e^{\lambda z}).
\]

The above function is given by the analytic solution with the boundary layers along \(x = 1 \), \(y = 1 \) and \(z = 1 \). Hence a non-uniform grid along both directions with accumulation near \(x = 1 \), \(y = 1 \) and \(z = 1 \) is used by the following stretching formula

\[
x = \frac{i}{N_x} + \frac{\lambda}{\pi} \sin \left(\frac{2\pi i}{N_x} \right),
\]

\[
y = \frac{j}{N_y} + \frac{\lambda}{\pi} \sin \left(\frac{2\pi j}{N_y} \right),
\]

\[
z = \frac{k}{N_z} + \frac{\lambda}{\pi} \sin \left(\frac{2\pi k}{N_z} \right).
\]

When \(\lambda \) is going closer to 1, more grids are accumulated near \(x = 1 \), \(y = 1 \). When the grid sizes are \(32^3 \) and \(\lambda = 0.8 \), the distribution of grids is given as Figure 3. Table 2 indicates the maximum absolute errors CPU timing and order of accuracy for different stretching parameter \(\lambda \) for Example 2. The value of \(\lambda \) changes from 0.0 to 0.9. We observed that in non-uniform grids with increasing the stretching parameter \(\lambda \), more and more grids are accumulating into the boundary layers, consequently more accurate results are obtained from two different methods. Also, the rate of convergence is continuously increases with the increase of \(\lambda \). We observed that when \(\lambda = 0.8 \), then considerably most accurate solution is obtained with the HOC scheme, but when \(\lambda \) is increased to 0.9, it leads to decrease in accuracy. Fig. 4, shows the depicts the contours of the exact solution in the plane for \(y = 0.688 \). (a) Exact solution (b) by HOC on uniform grids, (c) computed solution by the CDS scheme on uniform grids, (d) solution by HOC on non-uniform grids with \(\lambda = 0.8 \).

Figure 2: (a) Exact solution, (b) Computed solution from HOC scheme on uniform grids, (c) HOC scheme non-uniform grids, (d) CDS scheme with non-uniform grids. The error vector \(e_{ij} = u_{ij} - v_{ij} \) and \(N = 32 \) are the number of nodes and \(k = 10 \) and \(\lambda = -0.8 \), for Example 1.

Table 2: Comparison of maximum absolute errors, CPU timing and order of accuracy of the two schemes for Example 2,

<table>
<thead>
<tr>
<th>N</th>
<th>(\lambda)</th>
<th>Error</th>
<th>CPU</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>0.0</td>
<td>5.200e-2</td>
<td>5.200e-2</td>
<td>1.0</td>
</tr>
<tr>
<td>64</td>
<td>0.2</td>
<td>3.421e-1</td>
<td>3.421e-1</td>
<td>1.0</td>
</tr>
<tr>
<td>32</td>
<td>0.4</td>
<td>1.571e-1</td>
<td>1.571e-1</td>
<td>1.0</td>
</tr>
<tr>
<td>16</td>
<td>0.6</td>
<td>1.403e-1</td>
<td>1.403e-1</td>
<td>1.0</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>1.005e-1</td>
<td>1.005e-1</td>
<td>1.0</td>
</tr>
<tr>
<td>4</td>
<td>0.9</td>
<td>1.005e-1</td>
<td>1.005e-1</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Figure 3: Non-uniform grids distribution in \(xy \)-plane, \(32^3, \lambda = 0.8 \).

5. CONCLUSION

We have studied the Cauchy problem for Helmholtz type equation in two and three-dimensional cases. To deal with the instabilities of the solution of the concerned problem a multigrid method is applied. The main advantage of multigrid method is that it provides accurate, stable, convergent numerical solution to the Cauchy type problem associated with Helmholtz equation \(l = \Delta + k^2 \) for \(k \in \mathbb{R} \) and \(k \in \mathbb{C} \). We have used special multigrid methods which solving the resulting system efficiently. It is observed that multigrid method with the Gauss-Seidel relaxation work very well in solving the high-order scheme discretized 3D Helmholtz equation. The HOC scheme has three to fourth order accuracy and is more efficient than CDS scheme. It is also observed that on uniform grids the HOC and CDS schemes can attain its maximum accuracy. But in case of boundary layer problems with suitable grid stretching ratios, the HOC scheme has the desired accuracy. Therefore, it is revealed that grid distributions have much more significant effect on calculated accuracy for boundary layers problems. Numerical results show that multigrid method with HOC has the required accuracy by the accumulating many more grid points into the boundary layer and faster than the CDS scheme.

REFERENCES

